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IntRoductIon
Bioinformatics research deals with acquisition of new information to 
use in health care and patients’ management [1]. Many diagnostic 
systems have been developed progressively during the two recent 
decades. In particular, the evaluation of these diagnostic imaging 
systems or biomarkers is primarily interested in bioinformatics 
research. ROC analyses have been used widely for evaluation of 
classifiers such as biomarkers/diagnostic technology [2,3]. There 
are several examples of the use of ROC analysis in bioinformatics 
medicine [4,5], in particular, when the diagnostic test results are 
recorded on continuous scales. For example a large number of 
computer based diagnostic program have been developed to advise 
a physician on patient diagnosis and to evaluate the extent to which 
these information systems can improve the patients’ diagnosis and 
their management. Although ROC analysis is the choice of method 
in evaluation of bioinformatics systems, however there is no single 
method and alsono single accuracy index in evaluating diagnostic 
tools [3]. 

In diagnostic tests evaluation, when the test results are recorded 
in ordinal or continuous scales, the sensitivity (or True Positive 
Fraction-TPF) and the specificity (or True Negative Fraction-TNF) 
can be calculated across all possible cut-off values [2,3]. Then, the 
plot of sensitivity versus 1-specificity (or False Positive Fraction-
FPF) is called ROC curve and the Area Under the Curve (AUC) has 
meaningful interpretation. It is also considered as a measure of overall 
accuracy index in diagnostic medicine [6-8]. The AUC is interpreted 
as the probability that a randomly chosen diseased subject is rated 
as more likely to be diseased than a randomly chosen non-diseased 
subject. This interpretation is based on nonparametric Mann-
Whitney U-statistic that is used in calculating AUC [6]. The partial 
area at clinical relevant of false positive, as an index of accuracy, has 
been suggested [9]. This is particularly interesting when two ROC 
curves cross each other and produce a similar AUC. The slope of an 
ROC curve at any point is equal to the ratio of two density functions, 
describing the distribution of separator variables (or test results) in 
the “diseased” and “non-diseased” population called likelihood 

ratio[10]. A monotonically increasing likelihood ratio corresponds to 
a concave ROC curve.

An advantage of ROC analysis is to determine the optimal cut-off 
values using equal or unequal weight for FPF and FNF [11]. The 
two conventional methods called Euclidian index and Youden index 
use an equal weight. The Euclidian index minimizes the square of 
distance between the point at (0,1) on the left hand corner of ROC 
space at any point on ROC curve. The Youden index maximizes 
the difference between sensitivity and FPF or 1-specificity that is 
defined as sensitivity+specificity-1. Thus, by maximization of sum of 
sensitivity and specificity across various cut-off values, the optimal 
cut-off is estimated. The third method incorporates the prevalence 
of diseases and the financial cost of correct and false diagnosis 
with decision utility based method. The fourth, so called product 
method uses the maximum product of sensitivity and specificity as a 
criterion in determining optimal cut- off point [12]. The three popular 
methods of Youden index, Euclidean index and product method 
yield the identical optimal cut-point in particular with symmetric 
condition of ROC curve [13] but the diagnostic odds ratio as other 
criterion produces an extreme cut-off value that is very far from the 
optimal relevant cut-off point for diagnostic biomarkers [13,14].

Several methods of parametric, semi-parametric non-parametric 
have been proposed for constructing of ROC curve and estimating 
AUC and testing of two ROC curves [15,16]. Although, these 
methods have been widely used in published diagnostic studies by 
clinician [17,18], the advantage and disadvantage of each approach 
were not well understood by clinical practitioner. Thus, this article 
provides a conceptual framework of full review of parametric, semi-
parametric, and nonparametric, and re-sampling methods in ROC 
analysis for clinical practice.

Earliest Parametric Approaches for Rating data
In the first applications of ROC methodology, curves were 
constructed from rating data by making certain distributional 
assumptions. The parametric assumptions specify the forms of 
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ABStRAct
Receiver Operator Characteristic (ROC) analysis is the choice of method in evaluation of biomarkers in bioinformatics research. 
However, there is no single method and also no single accuracy index in evaluating diagnostic tools. This review provides an 
extensive illustration of different methods of ROC curve analysis that can be used in clinical practice of diagnostic studies. It 
includes their early use for rating data and the recent developments for quantitative data with a discussion of choice of model 
selection in parametric ROC analysis compared with non-parametric approach. The relevant methodological issues of these two 
alternative approaches have been discussed in terms of bias and sampling variability of Area under the curve (AUC) index that 
may influence on the performance of diagnostic tests. The methods were illustrated with two relevant clinical examples. The 
semi-parametric and parametric model of mixture of Gaussian is comparable with purely nonparametric approach. The choice 
between methods depends on practical conveniences unless the presence of severe departure from binormality. The recent new 
development and the gaps in knowledge concerning their behaviours in actual applications for medical researches and a guideline 
for future research have been discussed.
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under the curve and other indices along with their corresponding 
precision. The area under the ROC curve is the proportion of the 
Gaussian distribution to the left of ZA where ZA=a/(1+b2)1/2; i.e., 
AUC=Φ(a/(1+b2)1/2) [2]. This methods also allows to estimate the 
variance of AUC under binomial assumption and to calculate its 
95% confidence interval and to test the hypothesis AUC=0.5 versus 
AUC >0.5. Using Delta method with an approximation when the 
ratio of SD is close to one (i.e., b=1) the binormal estimator of AUC 
variance of  is 

overlapping distributions on "separator" scale for the "diseased" 
and "nondiseased" populations, in order to estimate a smooth 
ROC curve. The interpretation was typically recorded on a five-
point ordinal scale that indicated the degree of diagnostic certainty. 
Parametric ROC analysis is used when underlying distributions of 
test results for diseased and nondiseased are known. For example, 
binormal model, commonly used in ROC analysis assume the test 
results either Gaussian or after some monotonic transformation 
such as log, square or Box-Cox makes the data become Gaussian 
distribution for both diseased and non-diseased [3]. More than 40 
years ago, by postulating that the ratings arose from the discretization 
of an underlying "latent" scale, and by making certain distributional 
assumptions, Dorfman and Alf (1969) and others were able to 
objectively fit smooth ROC curves to rating data using binormal 
assumption  of two overlapping Gaussian distributions with different 
parameters [15]. [Table/Fig-1] shows the corresponding ROC curve 
was derived from the results of test A and test B from binormal 
model in “nondiseased” and “diseased” has equal variance, the 
corresponding ROC curve is symmetric but in test C more variation 
was ascertained for “diseased” than “nondiseased” and thus its 

[table/Fig-1]: ROC curves derived from different combinations of overlapping 
Gaussian distributions (Test A: ND: N (0, 1.5) and D: N (2, 1.5); Test B: ND: N (0, 
1.5) and D: N (3, 2.5); Test C: ND: N (0, 1.5) and D: N (3, 1.5).

derived ROC curve is asymmetric. In addition, the ROC curves of 
tests A and C cross to each other.

Hanley JA found that the distributional assumptions in these analyses 
of rating data were not critical [19]. In particular, the binormal model 
gave good fits even when rating data were generated by discretizing 
data generated from other models. Several other parametric forms 
such as bi-logistic and bi-exponential have also been suggested 
[20].

Fitting Binormal Model for Rating data
In spite of many possible models for the overlapping distributions, 
the binormal model is by far the most commonly implemented in 
several packages (e.g., Metz's software) to fit ROC curves to rating 
data; it is also now used for laboratory-type data [21]. This functional 
assumption has been justified on theoretical and practical grounds 
for rating data [19]. The binormal assumption allows ROC curves 
to be transformed into straight lines on normal-deviate scales i.e., 
Φ-1(TPF) = a+bΦ-1(FPF) where Φ is the cumulative density function 
of the Gaussian distribution [2]. The ROC curve is described by 
two parameters - a: the difference between the mean of the two 
distributions (standardized by the standard deviation of the diseased 
population), and b: the ratio of the two standard deviations [2,3]. 
Also, the distributions are described using the two parameters of 
interest rather than four (means and standard deviations of the two 
distributions).

The method of maximum likelihood, based on two sets of 
multinominal data is used to estimate binormal parameters “a” and 
“b” along with (c-1) "cut-off" parameters where c is the number 
of rating categories. From “a” and “b”, one can calculate the area 

[table/Fig-2]: ROC curves from bi-normal model and bi-logistic model with the 
same parameters.

rather than the binormal model. In fact, these two models with equal 
mean and standard deviation are close in shape. Compared with 
the normal density function, the logistic density function is slightly 
taller, narrower through the midsection and wider at the tails. The 
bilogistic model  and binormal model with the same parameters of 
mean and standard deviation yield similar ROC curve and AUC {see 
[Table/Fig-2]- ND:L(0, 1), D:L(1.5, 1.4); ND: N(0, 1) and D:N(1.5, 
1.4), ND:N(0, 1): AUCBilogistic=0.821, AUCBinormal=0.808}. 

choice of Model in Fitting Roc curves
One may ask whether a particular distributional form on the decision 
variable is preferred, especially when the data are collected in the 
rating scale, and the underlying decision variable is unobservable. 
Although any two underlying distributions determine an ROC 

where a=ϕ-1(AUC) ×1.414 and n1 and n2 are the sample size for 
nondiseased and diseased [21].

As of now, the fitting of the binormal model for rating data can be 
carried out using Dorfman and Alf's program (1968) and Metz's 
software (ROCFIT) [22]. One can obtain estimates of the ROC 
parameters, their variance covariance matrix, the relevant indices 
of accuracy and the chi-square test of goodness of fit. In addition, 
Metz CE et al., extended the binormal model to allow for testing 
for differences in the diagnostic accuracy of two systems on the 
basis of correlated data [23,24]. This bivariate binormal model was 
implemented in the CORROC software [22]. Although the estimates 
for each ROC curve are close to those obtained by analysing each 
set of data separately, the main advantage of CORROC procedure 
is that it measures the covariance of the estimates of accuracy for 
each test. This is particularly important if the covariance is strongly 
positive since it means that the standard error of the difference of 
the two estimates of accuracy indices will be decreased.

Bi-logistic Model
The only other serious competitor of binormal model is the bi-
logistic model [20]. Bi-logistic model and bi-exponential can be 
fitted using PLUM software [25] but the software (PLUM) is not 
currently widely available. One may choose the bilogistic model 
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curve, the reverse does not hold: an ROC curve does not uniquely 
determine the underlying unobservable distributions of decision 
variables [3,23]. Any monotonic transformation of the decision axis 
generally yields different pairs of distributions, but does not change 
the ROC curve [3,23]. Because the decision variable is unobservable 
in many applications of ROC analysis, the underlying form of the 
latent distributions cannot be uniquely determined. Thus, one only 
can specify the underlying distribution up to a particular monotonic 
transformation of the decision axis. 

However, among the parametric forms of overlapping pairs of 
distributions, the binormal model is more popular than any other 
because of practical convenience. Indeed, the binormal assumption 
concerns only the functional form of the ROC curve and not the form 
of the underlying distributions themselves. If one makes a monotonic 
transformation of decision axis, the underlying distributions are no 
longer binormal, but they yield the same ROC curve. 

Parametric and Semi-parametric Roc Method for 
Quantitative data:
ROC techniques are no longer confined to subjective interpretations 
(rating data) from a “latent” decision scale. Most diagnostic tests 
in medicine yield quantitative data on direct or “observed” scales. 
Consequently, the ROC method has become popular for evaluating 
the performance of such tests [16,26,27]. In fitting binormal model 
to continuous data, two approaches have been proposed. The 
first directly fits the binormal model to raw continuous data using 
maximum likelihood methods to estimate ROC parameters and their 
SE. The validity of this approach depends that the results of tests 
for “diseased” and “nondiseased” follow Gaussian distribution or 
after some monotonic transformation such as log, square, Box-Cox 
makes the data binormal. In the latter case, the birormal model fits 
on the transformed data for diseased and nondiseased. Goddard 
MJ and Hinberg I (1990) warned that if the distribution of raw data 
from a biochemical test is far from Gaussian, indices of accuracy 
(and their corresponding standard errors) based on the directly 
fitted binormal model can be seriously distorted [28]. In cases of 
real or apparent non-binormality, one might be tempted to consider 
transformation of test results that the data to be nearly Gaussian 
or uses other pairs of distributions. Alternatively one may use an 
entirely non-parametric method [16]. 

The second parametric approach categorizes the data and uses an 
existing parametric method for rating data [29].  Since this approach 
does not fit directly binormal model to continuously distributed 
data, the discritization algorithm uses rank of data instead of raw 
data using LABROC algorithm in fitting binormal model, we call it 
as semi-parametric approach. The performance of binormal model 
implemented in LABROC (for now it is renamed as ROCKIT) has 
been evaluated by several investigators [29-32] and the summary of 
its performance was summarized in [Table/Fig-3]. Overall, this semi-
parametric approach for estimating of AUC- as a global index- is 
robust from departure of binormality except for bimodal form.

Another method of semi-parametric ROC analysis developed 
by Pepe using Generalized Linear Model (GLM) [33,34]. This 
approach is similar to nonparametric that does not use to make 
any distributional assumptions about diagnostic test results but 
similar to parametric method it estimates the ROC parameters “a” 
and “b” and corresponding AUC. Colak E et al., showed this semi-
parametric approach is reliable when distributions of test results are 
skewed and it provides a smooth ROC curve as well [35].

Extension of Parametric Roc Analysis with Mixture of 
Gaussian
Since the semi-parametric method may not yieldreliable and 
valid estimates of AUC and its SE with serious departure from 
binormality in particular with bimodal data [30], Hajian-Tilaki KO et 
al., proposed an extension of parametric method when distributions 

of biomarkers are Mixture Of Gaussian (MG) [36]. They algebraically 
showed that AUC and TPF are calculated by weighting parameters 
of each component of AUC’s and TPF’s of mixture elements. For 
a real problem, the parameters of mixture distribution will not 
be known and thus it is required to be estimated. By simulation 
investigation, they estimated ROC parameters with EM-algorithm 
for various configurations of bimodal data. Their results of simulation 
showed that the estimates of overall AUC are essentially unbiased 
and the bias of TPF was small and it was equally comparable with 
nonparametric counterparts [36]. However, the estimations of the 
parameters of mixture distributions are not simple and in some 
situations the MLE methods may not have solution because the 
likelihood function becomes singular toward infinity in particular for 
MG distributions with small variation [37]. With a mixture of Gaussian, 
in a case of strong bimodality, the simulated data was not encounter 
to singularity of likelihood function and the parameters of each of two 
components of mixture were estimated by MLE method using EM-
algorithm [36]. Using penalty likelihood or Bayesian method avoids 
likelihood function becomes singular in maximization procedure of 
EM algorithm [38,39]. In addition, Sorribas A et al., showedthatthe 
distribution family known as the S-distribution is insensitive and 
flexible for parametric ROC analysis of non-binormal data [40].

non-parametric Approaches to Roc Analysis:
Alternatively, a purely nonparametric ROC analysis can be used 
for both rating and continuously distributed data [6,41,42]. This 
approach has obvious appeal when test results are recorded on the 
continuous scale. This does not require any distributional assumption 

authors methods Performance

Goddard MJ 
and Hinberg 
I [28]

Parametric: Directly fitting 
of binormal model to raw 
data

The estimated ROC parameters 
would be distorted seriously 
unless one uses some monotonic 
transformation such as log, Box-Cox.

Metz CE et 
al., [29]

Semi-parametric: Fitting 
binormal via discrtitization 
of LABROC of raw data 
using LABROC1 and 
LABROC4 algorithm=

They found that binormal model was 
fit satisfactory with binormal data.

Hajian-Tilaki 
KO  et al., 
[30]

Semi-parametric: Fitting 
binormal via LABROC 
approach with Gaussian 
and non-Gaussian data

They showed that this semi-
parametric approach is robust for 
estimating AUC from departure 
of binormality except for bimodal 
distribution for diseased. However, 
the estimate of TPFΦ is more 
sensitive.

Faraggi D and 
Reiser B [32]

LABROC and Kernel 
methods

Transformation to normality is 
preferred except for bimodal 
distribution, kernel method would be 
more effective.

Pepe MS [33]
Semi-parametric: Using 
General linear model

The approach is rather similar 
to nonparametric but produced 
a reliable estimates of two ROC 
parameters of ‘a’ and ‘b’.

Cai T and 
Moskowitz 
CS [34]

Semi-parametric of 
binormal ROC curve

 Without making distributional 
assumption of test results yielded a 
valid estimate of ROC parameters 
using general linear model.

Colak E et al., 
[35]

Semi-parametric and 
nonparametric

Semi-parametric approach is reliable 
when distribution of test results is 
skewed.

Hajian-Tilaki 
KO et al., [36]

Extension of parametric 
ROC analysis with 
mixture of Gaussian

By simulated investigation, they 
showed that the estimated ROC 
parameter of AUC£ using EM-
algorithm was unbiased for various 
configurations of bimodal data and 
the bias for TPFΦ was negligible.

Sorribas A et 
al., [40]

ROC analysis with family 
of S-distribution

The family of S-distribution is 
insensitive and flexible of parametric 
method in ROC analysis of non-
normal data.

[table/Fig-3]: The related studies in evaluation of performance of parametric and 
semi-parametric ROC methods of quantitative data.
=It was renamed for new as ROCKIT program, £Area under the curve, ΦTrue positive fraction
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of test results in diseased and nondiseased to estimate AUC and 
other relevant index of accuracy and their standard errors. However, 
the trapezoidal role (i.e., nonparametric method) calculates the AUC 
by just joining ROC operating points (1-specicifity, sensitivity) will 
tend to underestimate AUC for rating data in particular when ROC 
operating points are not well spread out along the ROC curve [6] 
and the method itself does not yield smooth estimates of the entire 
ROC curve, unless one uses spline techniques. The area under the 
curve comprises several trapezoidals at each interval of observed 
operating points and the area of each segment can be easily 
calculated and summed as AUC. The area under the empirical ROC 
curve has been shown to be equal to the Mann-Whitney U-statistic 
(or Wilcoxon statistic) [6] which are widely used as a test of location 
for comparing distributions from two samples. This approached has 
become more attractive and less cumbersome and has the appeal 
of being simple to calculate AUC. The corresponding accuracy 

estimate Q1 and Q2 as and 

The third was Delong’s method that has two components of 
pseudoaccuracy for diseased and nondiseased [42]. The advantage 
of DeLong’s method is to compare the areas under two or more 
correlated ROC curves obtained from the same sample of subjects. 
The variance-covariance matrix is:

indices are obtainable even for small sample sizes. The Mann-
Witney U-statistic (or Wilcoxon statistic) allows to one estimate 
AUC [6,42,43]; the partial area for a clinically relevant range of 
FPF and TPFFPF can also be estimated nonparametrically [43,44]. 
[Table/Fig-4] summarized the related studies in assessment of 
performance of nonparametric AUC and its SE. The practitioner can 
easily use SPSS software to depict the nonparametric ROC curve 
and to estimate AUC (Mann-Whitney U-statistic), the corresponding 
SE and 95% asymptotic confidence interval for AUC and it p-value 
in single modality.

The corresponding sampling variability of nonparametric estimates 
of AUC can also be calculated nonparametrically as well. The three 
methods have been proposed for SE of AUC. The first was Bamber 
method that estimates the null variance of Wilcoxon statistic [41]. 
The second was Hanley and McNeil method that used Bamber’s 
formula with exponential approximation as follows [6]:

Where, n1 and n2 represent the sample size for nondiseased and 
diseased subjects respectively. The exponential approximation to 

Hanley and Hajian-Tilaki KO [45] restated the DeLong's method of 
calculating the variance of the accuracy index in a single diagnostic 
test is as follows:

Where Var (VN) and Var (VD) are the variance of pseudoaccuracies in 
nondiseased and diseased subjects respectively. These components 
of pseudoaccuracy has been examined by Hanley and Hajian-
Tilaki KO, and a full explanation of component of Delong’s method 
was presented in particular for comparison of two AUCs and the 
link between Delong method of pseudoaccuracies and jackknife 
pseudovalues has been justified [43]. The correlation between 
Delong individual pseuaccuracies is used for multiple signal detection 
in ROC analysis [46]. For rating data, the Bamber method [41] and 
Delong method [42] give equally good results and better than Hanley 
and McNeil method [6]. In particular, the exponential approximation 
(Hanley JA and McNeil BJ method) slightly underestimates the 
empirical standard error of nonparametric estimate of the AUC for 
rating data when the ratio of the standard deviation of distributions 
for the “diseased” to the “nondiseased” was greater than two [45]. 
With continuously distributed data generated from binormal and 
nonbinormal models, Hajian-Tilaki KO and Hanley JA have shown 
that the Delong method SE of nonparametric AUC reflects the actual 
variation and give equally good results compared with parametric 
SE of AUC and exponential approximation slightly underestimates 
the SE of AUC compared with actual variation even for continuously 
distributed data [46]. In particular, they showed, for bimodal data, 
Delong method apparently reflects better the actual variation than 
semi-parametric approach while for binormal data, the semi-
parametric approach yields a more precise estimates of AUC. In 
contrast, DeLong method provides an estimated covariance matrix 
for comparing the area under to or more correlated ROC curve 
using the theory of generalized U-statistic to provide an estimated 
covariance matrix [42]. In addition, nonparametric approach allows 
one to estimate AUC for degenerate data sets (i.e., the data set 
does not converge by MLE method in parametric approach). If 
the sample size is adequate, the nonparametric approach would 
avoid making distributional assumptions which would be viewed 
as somewhat restrictive. Overall, for continuous data, the binormal 
method implemented in LARROC procedure and nonparametric 
method yields a similar estimate of AUC and its SE [30]. Thus, 
the choice between semi-parametric and purely nonparametric 
methods for estimates of AUC depends on availability of software 
and practical conveniences. 

confidence Interval of Auc and testing
Testing of AUC with a specific predetermined value in asingle modality 
or testing of equality of accuracy of two alternative diagnostic tasks 
is interesting for decision making in clinical practice. The p-value 
that the authors report in their results gives an intuition how likely the 
results reported is due to chance. However, it does not explainabout 
the precision of estimate and how the diagnosis parameter varied 
in plausible range with a confidence level. Instead SE of estimates 
is primary interested for precision purpose but Confidence Interval 

Where, SN and SD represent the estimated variance-covariance 
matrices of the paired pseudo-values in the nondiseased and 
diseased groups, respectively.

authors methods Performance

Bamber D [41]
Nonparametric ROC 
curve

He has shown that the AUCΦ to be 
equal the Wilcoxon statistic and the 
nonparametric variance of AUC of a 
single diagnostic test was formulated.

Hanley JA and 
McNeil B [6]

Nonparametric 
estimates of AUC

He explained a clear interpretation of 
AUCΦ and its link with Wilcoxon statistic.

DeLong ER et 
al., [42]

Nonparametric of 
variance-covariance 
matrix for correlated 
AUCs.

Without making any distributional 
assumption of test results, They 
formulated a variance-covariance matrix 
for two or more correlated AUCsΦ.

Hanley JA and 
Hajian-Tilaki 
KO [43]

Nonparametric 
estimates of AUC 
and its sampling 
variability

They restated Delong’s method and 
introduced the interpretation of Delong 
pseudo accuracies and its link with 
jackknife pseudo values and thus the 
components of sampling variability of 
AUCΦ.

Hajian-Tilaki 
KO and Hanley 
JA [46]

Nonparametric SE of 
AUC with numerical 
investigation

They have shown that Delong’s methods 
of SE of AUCΦ reflects better the 
actual variation than semi-parametric 
approach with non-binormal data while  
for binormal data the semi-parametric 
method yields a more precise estimate 
of SE=.

Hajian-Tilaki 
KO et al., [30]

Comparing 
nonparametric and 
semi-parametric

With numerical investigation it has been 
shown that nonparametric and semi-
parametric approach yields a similar 
estimate of AUCΦ.

[table/Fig-4]: The related studies of performance of nonparametric ROC method 
of quantitative data.
ΦArea under the curve, =Standard error 
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and they showed that two approaches gave equally results in 
SE of nonparametric AUC [42]. This approach was adapted for 
assessment of multiple reader variation in ROC analysis [49]. Yao W 
et al., developed the nonparametric method for estimation of AUC 
in order properly into account the sampling scheme in complex 
sample survey data [50]. They used jackknife and balanced repeated 
replication methods to estimate variance of nonparametric AUC and 
to account for complex sample design and sample weighting.

Bootstrapping method: Another re-sampling technique called 
bootstrapping has been used to obtain the SE and confidence 
interval of AUC and TPF. This technique is a statistical procedure 
for estimation of distribution function and it has been used for 
ROC analysis by several authors [51,52] - see Appendix for 
bootstrap algorithm. The method allows to derive the density 
distribution of AUC (or TPF or partial area) and to obtain the 
percentiles of these distributions and their 95% confidence interval.

Regression Approach in Roc Analysis
In most diagnostic studies, ROC curve for diagnostic test have been 
reported without taking into account the possible effect of covariate 
on test results [53]. However, the test results might be influenced 
by age and severity of disease [54]. Thus pooling all data into single 
ROC curve might distort the accuracy of diagnostic test. This occurs 
when covariate is associated with both test results and the true state 
of disease [55,56]. Janese H and Pepe MS graphically showed that 
the overall ROC curve and corresponding AUC substantially differ 
from stratum specific ROC curve and their AUC when confounding 
is present [53]. Thus, the covariate adjustment is required in ROC 
analysis. For example, for evaluation the accuracy of PSA (prostate 
serum antigen) concentration, the influence of patient age had been 
reported [56]. Nevertheless, few clinical investigators adjusted the 
effect of covariates in clinical practice of diagnostic test evaluation. 
At least three methods to regression for adjustment of covariate in 
ROC analysis have been developed [25,33,57,58]. The first, Tosteson 
ANA and Begg CB proposed the use of ordinal regression model 
for covariate adjustment into ROC curve [25]. Second, models that 
quantify covariate effects on summary measure of ROC curve such 
as AUC have been proposed by Thompson ML and Zucchini W 
[59]. The third uses the General Linear Model (GLM) thathas been 
suggested by Pepe MS [58]. The latter can be used a broader 
range of test results and covariates [33,56]. The main concern of 
this direct modeling is that the estimating equation might be difficult 
to solve numerically for estimation of model parameters [33]. This 
analysis can be performed using standard software for fitting GLM. 
Stata software has a feature for adjustment of covariates in ROC 
analysis. Moreover, Cai T and Zheng Y extended cumulative residual 
based approach for graphical and numerical assessment of model 
checking for ROC regression analysis [60]. With this framework, the 
goodness of fit of some commonly model used in ROC analysis 
can be evaluated. This regression methodology is an active area of 
ongoing research in ROC analysis from direct to indirect method of 
modeling of covariate adjustment.

Measuring of diagnosticAccuracy with three 
diagnostic categories
ROC methodology is no longer confined to only two diagnostic 
categories “diseased” and ‘nondiseased” but also the method 
proposed for estimating the diagnostic accuracy when there are three 
ordinal diagnostic groups [61]. There aremotivative examples where 
patients with Alzheimer’s disease are usually classified into three 
groups and should receive different categories specific treatment. 
In this situation, the ROC curve surface describes the probability 
of correct classification in the three diagnostic groups based on 
various set of diagnostic thresholds used and it was proposed the 

(CI) of diagnosis accuracy reports a range of plausible results 
with a specific confidence level. Asymptotic properties of normal 
approximation of AUC in a single diagnostic task allows to derive 
confidence interval as

However, the asymptotic property of AUC may not be satisfied as 
AUC is close to 1. In this scenario, the exact binomial CI of AUC or 
bootstrapping CI is recommended[47,48].

All relevant statistical software can calculate the 95% CI for AUC 
that is the most commonly used in medical reports. For example, 
95% CI of AUC: 0.75-0.85 i.e. 95% of times through the sampling 
replication, the true AUC would be within 0.75 and 0.85. In another 
word, if the study was performed with 100 times with sampling 
replication, 95% of times the true accuracy index is within the range 
such as 0.75-0.85. The clinical researchers may only report the 
p-value but reporting CI is more informative rather p-value alone. 

In comparative diagnostic studies, a common problem is to test the 
accuracy of two diagnostic tasks that perform on the same subjects. 
Many ROC methods and also some software do not take into 
account the correlation between two ROC curves that estimates on 
the same subjects. Thus, the investigator should clearly say for their 
methods whether they accounted such correlation between two 
ROC curves. The CORROCFIT program provides such as unbiased 
comparison and the SE of difference of AUC’s is estimated by taking 
into account of the correlation between two ROC curves [24]. Also, 
Delong methods of SE estimation allows for pairwise comparison 
that was implemented in Stata software [42]. Additionally, taking 
into account the correlation between two ROC curves, in estimating 
SE of difference in AUC’s, the power of statistical test would be 
increased.

Re-Sampling Methods in Roc Analysis
The sampling distributions of ROC indices (AUC and TPF) are rather 
complex and asymmetric. Thus, asymptotic theory of confidence 
interval for AUC and TPF may yield invalid estimates, in particular 
for small sample size. The two attractive approaches of re-sampling 
techniques (jackknife and bootstrap methods) have been adapted 
to estimate sampling variability of AUC and TPF and their confidence 
intervals.

jackknife method: The main concept of jackknife method 
in ROC analysis is pseudovalues as a replacement of raw data 
value by an equivalent [43]. The pseudovalue for each observation 
can be defined as the contribution of that observation to the 
summary index. The average of these pseudovalues gives the 
same summary index as raw data. The variation of these 
pseudovalues allows one to calculate the sampling variability 
of ROC indices. The jackknife pseudovalues can be calculated 
for any indices. For example, if AUC is summary index, the AUC 
pseudovalues (pAUC) corresponding to ith observation is defined as:

pAUC=(m+n) AUC-(m+n-1)AUC(-i)

where AUC is calculated for all m+n observation (m for diseased and 
n for nondiseased) and AUC(-i) calculated for m+n-1 observations 
when the ith observation omitted from samples. Then, the jackknife 
variance of summary index is:  Var(AUC)= Var(pAUC’s)/m+n

The method allows one to compare the two ROC curves derived from 
the same subjects [10]. The covariance between two pseudovalues 
from the same subject can be calculated by correlation between 
them. Hanley and Hajian-Tilaki KO algebraically showed the link 
between jackknife pseudovalues and Delong pseudoaccuracies 

and in comparative diagnostic tasks, the confidence interval of 
difference in accuracy indexes is as
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entire or partial volume under the ROC surface measures diagnostic 
accuracy [62]. The description of details of this method is beyond 
the scope of this article. The interested readers are referred to some 
recent published articles [61,62].

Software development
Several software programs have been implemented for parametric 
and nonparametric ROC analysis. As we already mentioned, 
ROCKIT software developed by Metz CE et al., at university of 
Chicago for parametric and semi-parametric ROC analysis that is 
widely available. It is used for comparison of two ROC curves for 
paired and unpaired subjects but not for partial area. Stata software 
can be used for comparison of nonparametric and parametric two 
partial areas and it has all features of ROC analysis. SPSS software 
produces nonparametric ROC curve and AUC and testing with 
the null value (AUC=0.5) but it does not test for comparison of 
two ROC curves and the partial area. Stat 2010 software provides 
nonparametric ROC analysis of both paired and unpaired subjects 
for AUC but not partial area. Additionally, Sigma plot program also 
is available for nonparametric ROC analysis. Furthermore, SAS 
releases (version 9.2 or higher) and several other SAS ROC macros 
have been built for parametric and nonparametric ROC analysis. 
As we already pointed out, bi-logistic model and bi-exponential 

[table/Fig-5]: The distribution of CRP among subjects with and without preec-
lampsia.

methods aUC
SE(aUC)

Delong Bamber hanley Binormal

Nonparametric 0.844 0.0402 0.0401 0.0396 -

Parametric 0.850 - - - 0.0389

[table/Fig-6]: The parametric and nonparametric estimates of diagnostic accu-
racy of CRP for predicting of preeclampsia and its SE with different methods.
AUC: Area under the curve; SE: Standard error; CI: Confidence interval

[table/Fig-7]: ROC curve of CRP and ESR1h in predicting IBD patients.

Biomarkers n aUC SE 95% Ci p-value*
CRP 60 0.798 0.056 0.689-0.908

0.48
ESR1h 60 0.737 0.064 0.611-0.864

[table/Fig-8]: Comparison of diagnostic accuracy of CRP and ESR1h for predic-
tion of IBD patients.
H0: area (CRP) = area(ESR1h), *Chi-square test;  AUC: Area under the curve; SE: Standard error; 
CI: Confidence interval

showed a significant difference of the mean of CRP between two 
groups (10.03±6.16 and 3.77±3.45 respectively, p-value=0.001). 
We applied ROC analysis using Stata 13.0 software. This software 
has a special feature to calculate the diagnostic accuracy (AUC) 
and its SE both parametrically and nonparametrically. Using 
binormal model the rocfit program were performed. As results 
shown in [Table/Fig-6], the parametric and non-parametric AUC 
yielded rather similar (the estimates of AUC were 0.850 and 
0.844 respectively). We also calculated the three methods of non-
parametric SE of AUC, Hanley JA and McNeil BJ, Bamber D, and 
DeLong ER et al., [6,41,42]. The estimates of SE of Delong’s and 
Bamber’s methods were identical but Hanley’s method produced 
slightly smaller. However, the estimate of SE was lower than other 
methods with binormal fit using Delta method approximation.

Example 2. A comparative study of two diagnostic 
tasks: In a clinical study of 30 patients of Inflammatory Bowel 
Diseases (IBD) and 30 healthy controls, the data of two biomarkers: 
CRP and ESR1h were measured on the same subjects and 
thus two sets of outcomes are correlated (the ROC curves are 
correlated). Roccomp function in Stata software was used to 
compare the classification ability of two modalities for predicting 
of true disease status. We plotted two ROC curves corresponding 
to CRP and ESR 1 hr and their area were compared in [Table/
Fig-7]. For each biomarker, the summary statistics were reported in 
[Table/Fig-8] and the test for the equality of area under the curves 
was performed using the methods proposed by DeLong ER et 
al., [42]. Although the AUC for CRP is slightly larger than ESR 
1 hr, the chi square test yields a non-significant p-value of 0.48.

dIScuSSIon
Despite the flexibility of binormal model for quantitative data in ROC 
analysis, using the LABROC procedure produces an unbiased 
estimate in AUC when underlying distribution is far from Gaussian 
[19,27]. However, several numerical investigations have shown that 
in a case of severe departure from binormality, especially bimodal 
forms, the calculated SE of AUC overestimates its empirical SE and 
the bias in estimates of TPF is  considerable [30-32]. A more flexible 
parametric form of mixture of Gaussian for underlying distributions 
of test results yields an unbiased estimate of AUC and TPF and their 
SE [36]. However, a little attentionhas been donein clinical practice 
because of practical inconvenience and the lack of availability of 
software. 

Alternatively, nonparametric ROC analysis has been used widely for 

model can be fit using PLUM software but this software is not 
currently widely available. Moreover, function of R software so 
called “roc.test” (pROC) compares the AUC or partial area AUC 
of two correlated or uncorrelated ROC curves and three methods: 
“Delong”, “bootstrap“and “Venkatraman” are used.

Examples and Illustrations

Example 1: a single diagnostic task: We applied both 
parametric and nonparametric methods with real clinical data 
to show how different methods yield rather similar results. In a 
clinical study, 400 pregnant women were recruited to demonstrate 
the predictive ability of serum C-Reactive Protein (CRP) levelfor 
preeclampsia. The distribution of data of CRP has been shown in 
[Table/Fig-5] among subjects with and without preeclampsia (n=28 
and n=372 respectively). As shown the distribution of CRP rather 
deviates from normality and both  t -test and Wilcoxon rank test 
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numerical test results [41-44]. An attractive feature of this approach 
is the pseudoaccuracy that is interpreted the accuracy of test at 
individual level. The average of these pseudoaccuracies is equivalent 
to Wilcoxon statistic (or AUC) with meaningful interpretation [42]. 
The variance of AUC is the sum of variance of two components 
of pseudoaccuracies in diseased and nondiseased divided by the 
number of subjects respectively [43]. As we already noted, Hanley 
JA and Hajain-Tilaki KO restated Delong’s method of SE of AUC 
in a single diagnostic task [45] but the attractive future of Delong’s 
methods is the covariance of two correlated ROC can be calculated 
from the structure of variance-covariance matrix of pseudoaccuracy 
elements. The results of our illustrated example show that in spite 
of departure of data from binormality, the semi-parametric and 
nonparametric methods yielded similar results in AUC and its SE. 
While Hajian-Tilaki et al., showed that the Delong’s method of 
estimates of SE better reflects the actual variation than binormal 
based and exponential approximation with numerical investigation 
[46].

In comparing two diagnostic tasks, the clinician almost use the 
same subjects. The analysis should consider the covariance of two 
correlated AUC or any other accuracy indexsuch a paired design. 
The lack of consideration of pair design in analysis, the distinction 
between two diagnostic tasks may not be detected and the power 
of statistical test would be decreased. The relevant issues must be 
considered in sample size calculation in the design of diagnostic 
studies and analysis [63].

Despite some methods presented for covariate adjustment in ROC 
analysis [25,57,58], little attention has been focused in regression 
approach inanalysis of medical published articles of diagnostic 
studies. This might be due to the lack of availability of established 
methods and relevant software. Additionally, there are several 
recent new development of ROC methodologies with involving 
multiple signals (three or more diagnostic categories) [61,62] and 
also combing the information of multiple biomarkers to optimize the 
ROC curve [64-67]. The research in this area is still continuing and 
these new methods were not used widely in clinical investigations 
yet.

concluSIon
In spite of attractive performance of semi-parametric approach of 
binormal model implemented in LABROC, in some circumstance the 
fit may be less appropriate with severe departure from binormality. 
Thus, a more flexible parametric model such as bi-mixture of 
Gaussian needs to be implemented in LABROC. This model is more 
robust to departure from binormality. In addition, more numerical 
investigations are needed to compare the performance of LABROC 
and GLM semi-parametric with purely nonparametric method for 
quantitative diagnostic test data.
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